FEBS 19229 FEBS Letters 415 (1997) 1-5

# Adrenaline inhibits depolarization-induced increases in capacitance in the presence of elevated [Ca<sup>2+</sup>]<sub>i</sub> in insulin secreting cells

Sabine Lehr, Martin Herbst, Julia Kampermann, Rainer Greger, Susanne Ullrich\*

Physiologisches Institut, Albert-Ludwigs Universität Freiburg, Abteilung II, Hermann-Herder-Straße 7, D-79104 Freiburg/Br, Germany

Received 17 April 1997; revised version received 3 August 1997

Abstract Cell capacitance  $(C_m)$ , cell conductance  $(G_m)$ , access conductance ( $G_a$ ) and membrane voltage ( $V_m$ ) were measured simultaneously in insulin secreting cells using the dual frequency method. Depolarization and stimulation of the cells with secretagogues increased  $C_{\mathrm{m}}$ . EGTA abolished the increase in  $[Ca^{2+}]_i$  and prevented the rise of  $C_m$ . Adrenaline inhibited the augmentation of  $C_{\rm m}$  without lowering  $[{\rm Ca}^{2+}]_{\rm i}$ . In pertussis toxin pretreated cells adrenaline had no effect. Thus, stimulation of insulin secretion is accompanied by an increase in  $C_{
m m}$ . Inhibition of exocytosis by adrenaline occurs even in the presence of elevated [Ca<sup>2+</sup>]<sub>i</sub>, i.e. at a more distal step of exocytosis.

© 1997 Federation of European Biochemical Societies.

Key words: Insulin secretion; Adrenaline; Capacitance measurement; Patch clamp method; Intracellular Ca<sup>2+</sup> activity

## 1. Introduction

Membrane capacitance (C<sub>m</sub>) directly correlates with the cell surface while it is largely independent of membrane conductance, composition and fluidity. Thus, exocytosis can be followed by measuring C<sub>m</sub> since exocytosis comprises granule fusion with the plasma membrane resulting in an increase in the cell surface [1]. We established and evaluated a new method for measuring C<sub>m</sub> using two sine waves of different frequencies as described by Rohlicek and Schmid [2]. This method makes it possible to simultaneously monitor C<sub>m</sub>, membrane conductance (G<sub>m</sub>), and access conductance (G<sub>a</sub>).

Insulin secretion is stimulated by substances which increase [Ca<sup>2+</sup>]<sub>i</sub> such as glucose and sulfonylureas [3–6]. In contrast, adrenaline, somatostatin and galanin inhibit secretion and lower [Ca<sup>2+</sup>]<sub>i</sub> [7,8]. However, using a permeabilized cell preparation we have previously shown that inhibitors such as adrenaline, somatostatin and galanin lower secretion in a GTP-dependent but Ca2+-independent way since Ca2+ was buffered with EGTA in these experiments [9-11]. The conclusion that inhibition of secretion occurs distal to the generation of second messengers, i.e. cAMP and Ca<sup>2+</sup>, gave rise to the hypothesis that adrenaline, somatostatin and galanin exert direct effects on exocytosis [10]. The present study was undertaken to consider this hypothesis for the insulin secreting cell line INS-1 at the single cell level.

\*Corresponding author. Fax: (49) (761) 203 51 91. E-mail: ULLRICHS@ruf.uni-freiburg.de

## 2. Materials and methods

## 2.1. Beta-cell isolation and cell culture

Rat islets were isolated as described before [12]. Purified islets were further digested with trypsin (0.5 g/l) to obtain a single cell suspension. Thereafter cells were seeded on poly-L-ornithine (10 mg/l, Sigma, Munich, Germany) coated glass coverslips and cultured in RPMI 1640 supplemented with 100 IU/ml penicillin, 100 μg/ml streptomycin and 100 ml/l decomplemented fetal calf serum (Seromed, Berlin, Germany) for 2-6 days prior to the experiment. INS-1 cells were cultured in RPMI 1640 and prepared for patch clamp experiments as described before [13].

## 2.2. Capacitance measurements

Coverslips were mounted in a bath chamber on the stage of an inverted microscope (IM, Zeiss, Germany), kept at 37°C and perifused with a solution containing (in mmol/l) 140 NaCl, 5.6 KCl, 1.2 MgCl<sub>2</sub>, 2.6 CaCl<sub>2</sub>, 0.5 glucose and 10 HEPES, pH 7.4. A flowing KCl electrode served as a reference and appropriate corrections for liquid junction voltages were made. The patch clamp pipettes (Clark-Medical, Reading, UK) with an input resistance of 4-6 M $\Omega$  were coated with beeswax to keep pipette capacitance (Cp) low and constant. They were filled with a solution containing (in mmol/l) 30 KCl, 95 K-gluconate, 1 MgCl<sub>2</sub>, 1.2 NaH<sub>2</sub>PO<sub>4</sub>, 4.8 Na<sub>2</sub>HPO<sub>4</sub>, 5 Na<sub>2</sub>ATP, 1 Na<sub>3</sub>GTP, pH 7.2.

Two dual lockin amplifiers (U. Fröbe and R. Busche, this institute) generated sine wave voltages of 250 and 800 Hz both of an amplitude of ±12.5 mV. Phase shifts due to the setup were first compensated with the reference phases of both lockin amplifiers with the open pipette in immediate proximity of the cell. After a  $G\Omega$  seal was obtained,  $C_p$  was compensated with  $C_{fast}$ .  $C_p$  (4.3 ± 0.04 pF, n = 27) varied maximally by 0.7 pF from one pipette to the next (mean  $0.35 \pm 0.05$  pF, n = 27). Measurements were performed with  $G_a > 30$ nS (51  $\pm 4$  nS, n = 24 for INS-1 cells and 50  $\pm 3$  nS, n = 61 for  $\beta$ -cells) in the voltage clamp mode. Values for Ga, Gm and Cm were continuously calculated by the computer and displayed on a pen recorder (Rikadenki, Freiburg, Germany). During the experiment membrane voltage (V<sub>m</sub>) was directly measured by switching to the current clamp mode of the patch clamp amplifier (U. Fröbe and R. Busche, this institute) and was also displayed on the pen recorder. Basal C<sub>m</sub> was  $4.7 \pm 0.6$  pF (n = 23) for  $\beta$ -cells and  $5.6 \pm 0.28$  pF (n = 24) for INS-1 cells. Membrane potential of  $\beta$ -cells and of INS-1 cells depolarized upon stimulation from  $-67 \pm 2$  mV (n = 62) to  $-40 \pm 1.7$  mV (n = 45) and from  $-63 \pm 2.5$  mV (n = 43) to  $-46 \pm 2.6$  mV (n = 22), respec-

2.3.  $[Ca^{2+}]_i$  measurements

For  $[Ca^{2+}]_i$  measurements the pipette solution was supplemented with 500 µmol/l fura-2 acid. After direct access between the pipette and the cell had been established, diffusion of fura-2 into the cell occurred within 1-2 min. The fluorescence of the patched cell was monitored with a photomultiplier system [14] at excitation wavelengths of 340, 360 and 380 nm with a filter rotation rate of 10 per second. As a measure of [Ca<sup>2+</sup>]<sub>i</sub> the fluorescence emission ratio at 340/ 380 nm excitation was calculated after subtraction of the autofluorescence as described previously [14].

## 2.4. Ca<sup>2+</sup> influx measurements

Measurements of Ca<sup>2+</sup> influx were performed simultaneously with C<sub>m</sub> measurements as inward currents in the presence of 20 mmol/l TEA-HCl (tetraethylammoniumchloride) and a pipette solution containing (in mmol/l) 110 CsCl, 10 TEA-HCl, 1 MgCl $_2$ , 5 HEPES, 10 NaCl, pH 7.2 (CsOH).

### 2.5. Statistical analysis

Data are presented as mean  $\pm$  S.E.M. Student's paired *t*-test (P < 0.05) was used for statistical analysis.

### 3. Results

## 3.1. Stimulation of \( \beta\)-cells

We first examined whether  $C_{\rm m}$  of isolated rat  $\beta$ -cells is increased by substances which stimulate insulin secretion. When  $C_{\rm m}$  was monitored at a voltage clamp condition of -70 mV,  $C_{\rm m}$  was stable or slowly declining. Often  $G_{\rm a}$  slowly declined in parallel. To prevent changes of  $G_{\rm m}$  tolbutamide was present in most experiments and the membrane voltage was clamped to -70 mV. Under these conditions  $G_{\rm m}$  was very low and stable (near zero). Addition of 100 µmol/l tolbutamide itself did not change  $C_{\rm m}$  (n=11, not shown).

Stimulation of voltage-dependent  $Ca^{2+}$  influx by application of four successive depolarizing voltage pulses to 0 mV induced an increase in  $C_{\rm m}$  of  $100.4\pm18$  fF, n=24. After stimulation of the cells with 16.7 mmol/l glucose, 50  $\mu$ mol/l tolbutamide, 5  $\mu$ mol/l forskolin and 100  $\mu$ mol/l IBMX the voltage pulse induced increase in  $C_{\rm m}$  was significantly higher (199.6±25 fF, n=24, cf. also Fig. 1A), reflecting the synergistic effect of forskolin, glucose and tolbutamide on secretion as has been demonstrated previously [11].

## 3.2. Inhibition of \( \beta\)-cells

To examine whether adrenaline inhibits increases in C<sub>m</sub> we

added 1 µmol/l adrenaline in the presence of 16.7 mmol/l glucose, 50 µmol/l tolbutamide, 5 µmol/l forskolin and 100 µmol/l IBMX. As shown in Fig. 1, adrenaline lowered the increase in  $C_{\rm m}$  due to depolarizing voltage pulses by 50% (from 275±27 fF to 133±30 fF, n=6). Pretreatment of the cells with 100 µg/l pertussis toxin prior to the experiment abolished the inhibitory effect of adrenaline, suggesting that a pertussis toxin sensitive G-protein mediates the effect of adrenaline on  $C_{\rm m}$  (Fig. 2).

## 3.3. Stimulation of INS-1 cells

For comparison, measurements were also performed using insulin secreting INS-1 cells [15]. Under control conditions, application of depolarizing voltage pulses to 0 mV increased  $C_{\rm m}$  by 73.9  $\pm$  10.1 fF, n = 21. Like in rat  $\beta$ -cells, stimulation of the same cells by depolarizing voltage pulses in the presence of 16.7 mmol/l glucose, 50  $\mu$ mol/l tolbutamide, 5  $\mu$ mol/l forskolin and 100  $\mu$ mol/l IBMX induced a significantly larger increase in  $C_{\rm m}$  than under control conditions (125.7  $\pm$  16.9 fF, n = 21).

### 3.4. Inhibition of INS-1 cells

Adrenaline, I µmol/l, in the presence of 16.7 mmol/l glucose, 50 µmol/l tolbutamide, 5 µmol/l forskolin and 100 µmol/l IBMX inhibited voltage pulse induced  $C_m$  increases by 50% in INS-1 cells (from 93 ± 22 fF to 41 ± 10 fF, n=7, Fig. 3). Measurements of  $[Ca^{2+}]_i$  in voltage clamped cells revealed that  $[Ca^{2+}]_i$  was not significantly changed by substances added to the perifusion solution (Fig. 4A,B). Moreover, the integrated  $Ca^{2+}$  influx induced by one depolarizing voltage

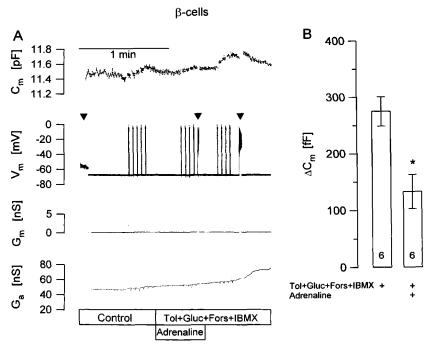



Fig. 1. Measurements of  $C_m$ ,  $V_m$ ,  $G_m$  and  $G_a$  in isolated rat  $\beta$ -cells. A: From top to bottom registrations of  $C_m$ ,  $V_m$ ,  $G_m$  and  $G_a$  are shown. In the beginning  $C_m$  of the cell was 11.45 pF.  $V_m$  was -60 mV (first arrowhead indicates  $V_m$  measurements at current clamp condition) and voltage was held at -70 mV at voltage clamp condition. Five or four successive depolarizing voltage pulses were applied firstly under control conditions (0.5 mmol/l glucose), secondly in the presence of 16.7 mmol/l glucose, 50  $\mu$ mol/l tolbutamide, 5  $\mu$ mol/l forskolin, 100  $\mu$ mol/l IBMX and 1  $\mu$ mol/l adrenaline and finally after withdrawal of adrenaline.  $G_m$  was stable and near zero nS,  $G_a$  was slowly increasing. Note that adrenaline attenuated the depolarization induced increase in  $C_m$ . In current clamp condition action potentials could be observed in the presence of stimuli (second and third arrowheads). B: Mean  $\pm$  S.E.M. of the increase in  $C_m$  due to four successive voltage pulses from six experiments. Statistical significance is indicated by the asterisk.

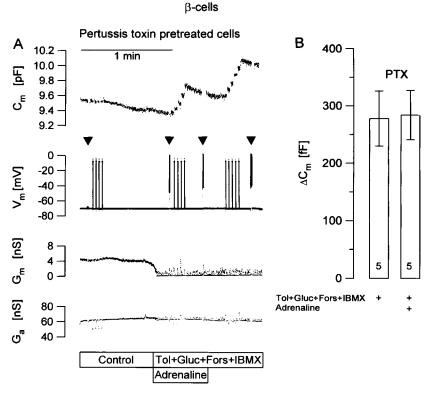



Fig. 2. Measurements of  $C_m$ ,  $V_m$ ,  $G_m$  and  $G_a$  in isolated rat  $\beta$ -cells pretreated with pertussis toxin. Pertussis toxin pretreatment (100  $\mu g/l$ , 3–4 h) was performed prior to the experiment. A: From top to bottom registrations of  $C_m$ ,  $V_m$ ,  $G_m$  and  $G_a$  are shown. Initially  $C_m$  of the cell was 9.57 pF.  $V_m$  was -70 mV (first arrowhead indicates  $V_m$  measurements at current clamp condition). Voltage was held at -70 mV at voltage clamp condition.  $G_m$  was 4 nS under control condition and declined to 0 nS after addition of stimuli.  $G_a$  was stable. Voltage pulses and substances were applied as indicated in Fig. 1. Note that adrenaline had no effect on depolarization induced increases in  $C_m$ . Under stimulation action potantials were observed in current clamp condition (arrowheads). B: Mean  $\pm$  S.E.M. of the increase in  $C_m$  due to four successive voltage pulses from five experiments.

pulse in the presence of stimuli was not significantly altered by the addition of adrenaline ( $108 \pm 32\%$  vs.  $100 \pm 29\%$ , n = 7, in the presence and absence of adrenaline, respectively).

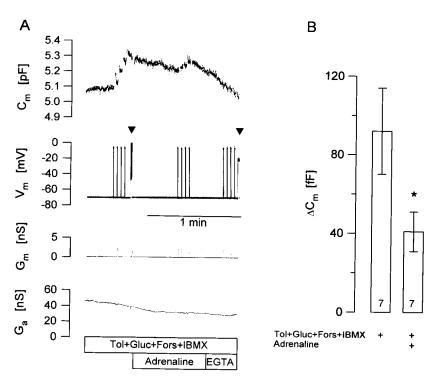
Thus, the adrenaline effect on  $C_m$  (Fig. 3) was not accompanied by changes of  $Ca^{2+}$  influx or of  $[Ca^{2+}]_i$  (Fig. 4) indicating an action of adrenaline distal to the rise of  $[Ca^{2+}]_i$ .

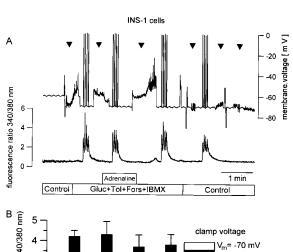
#### 4. Discussion

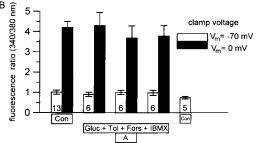
The present approach of combining zero current clamp measurement (V<sub>m</sub>) and voltage clamp measurement (I<sub>m</sub>) as well as fura-2 measurements enabled us to examine on the same cell simultaneously  $C_{\mathrm{m}}$ ,  $G_{\mathrm{m}}$ , and  $V_{\mathrm{m}}$  or  $V_{\mathrm{m}}$  and [Ca<sup>2+</sup>]<sub>i</sub> as well as the effects of stimulators and inhibitors of insulin secretion on these parameters. The standard whole cell configuration was used, since the access conductance obtained with amphotericin B permeabilized patches hardly exceeded 50 nS. A low access conductance, however, not only compromised stable C<sub>m</sub> measurements but was also limiting for reliably clamping the membrane voltage of the cells, a prerequisite for standardized stimulation by depolarization from -70mV to 0 mV. Increases in C<sub>m</sub> varied substantially from cell to cell and from one stimulation to the next. In the standard whole cell mode 39% of  $\beta$ -cells and 44% of INS-1 cells did not respond to voltage pulses with any change in C<sub>m</sub> (not shown). If responding cells were stimulated two or three times with four successive voltage pulses, half of the responding cells showed a declining responsiveness to depolarizing voltage pulses during the time course of the experiment. However, most of the responsive cells (85%) responded 2-4 times to stimulation. The increase in C<sub>m</sub> was transient as it was slowly reversible. Stimulation of rat β-cells and INS-1 cells increased  $C_m$  by  $275 \pm 27$  (Fig. 1) and  $125.7 \pm 16.9$  fF, respectively, which may represent the readily fusable pool of secretory granules. The increase in C<sub>m</sub> was larger in rat β-cells than in INS-1 cells. This difference may be explained by the 10 times fewer granules present in INS-1 cells compared to rat β-cells [13]. However, the commonly used insulin secreting cell line RINm5F has been shown to contain even 100 times fewer insulin secretory granules than normal rat β-cells [16]. Thus, the expected maximal increase in C<sub>m</sub> due to fusion of the entire pool of insulin containing granules of RINm5F cells will most likely not exceed 100 fF. Although qualitatively similar results to those reported here have been shown in a study using RINm5F cells, the C<sub>m</sub> changes in RINm5F cells exceeded 1 pF and can, thus, probably not account for exocytosis of insulin granules [17]. This makes the INS-1 cells more suitable for such studies. Our results are in the expected range and confirm studies on mouse β-cells [2].

There are several lines of evidence that changes in  $C_m$  reflect changes in insulin secretion. Firstly, during stimulation of insulin secretion membrane capacitance  $C_m$  increased in  $\beta$ -cells and in INS-1 cells. Thus, increases in  $[Ca^{2+}]_i$  by action potentials or by depolarizing voltage pulses were accompanied by increases in  $C_m$  (cf. Figs. 1–3). Addition of EGTA completely abolished the depolarization induced augmentation of

### INS-1 cells





Fig. 3. Measurements of  $C_m$ ,  $V_m$ ,  $G_m$  and  $G_a$  in INS-1 cells. A: From top to bottom registrations of  $C_m$ ,  $V_m$ ,  $G_m$  and  $G_a$  are shown. In the beginning,  $C_m$  of the cell was 5.08 pF. Voltage was held at -70 mV.  $G_m$  was 0 nS.  $G_a$  decreased from 48 to 30 nS. Arrowheads indicate measurements of  $V_m$  (zero current clamp). Four successive depolarizing voltage pulses were given during perifusion of the cells with substances as indicated (see also Fig. 1). The concentration of EGTA was 5 mmol/l. Note that adrenaline attenuated and EGTA inhibited depolarization induced increases in  $C_m$ . B: Mean  $\pm$  S.E.M. of the increase in  $C_m$  due to four successive voltage pulses from seven independent experiments. Asterisk indicates statistical significance.


 $C_{\rm m}$  and the rise of  $[Ca^{2+}]_i$  indicating that  $Ca^{2+}$  influx was the crucial event for stimulation of exocytosis (cf. Fig. 3). Secondly, the increase in  $C_{\rm m}$  due to depolarizing voltage pulses was twice as big under stimulatory as under control conditions both for rat  $\beta$ -cells and for INS-1 cells. We have previously shown that forskolin potentiates secretion 3–4-fold in INS-1 cells [18]. Since forskolin depolarized INS-1 cells and increased the frequency of action potentials, at least some of its effect may be due to an elevation of  $[Ca^{2+}]_i$ . However, in voltage clamped INS-1 cells, the elevation of  $[Ca^{2+}]_i$  due to voltage pulses is not augmented by forskolin (not shown) indicating a  $Ca^{2+}$ -independent action on secretion. Thirdly, adrenaline, an inhibitor of secretion, diminished the increase in  $C_{\rm m}$ .

We previously observed that adrenaline almost abolished the insulin secretion induced by glucose, tolbutamide and for-

Fig. 4. Measurements of  $V_m$  and cytosolic  $Ca^{2+}$  activity ( $[Ca^{2+}]_i$ ) as indicated by the fluorescence ratio in INS-1 cells. A.  $V_m$  (upper trace) was -70 mV under control condition (arrowheads indicate  $V_m$  measurements at current clamp condition). Addition of glucose, tolbutamide, forskolin and IBMX depolarized the cell to -55 mV (first and third arrowheads).  $[Ca^{2+}]_i$  (lower trace) was stable at the clamp voltage of -70 mV. Depolarization by voltage pulses indicated transient increases in  $[Ca^{2+}]_i$ . Substances were added as indicated (see also Fig. 1). Note that the depolarization induced  $[Ca^{2+}]_i$  increases were unaltered by the addition both of stimulators and of the inhibitor adrenaline. B: Mean  $\pm$  S.E.M. of maximal increase in  $[Ca^{2+}]_i$  due to voltage pulses of six independent experiments.

skolin, repolarized the cells, inhibited action potentials [19] and transiently lowered [Ca<sup>2+</sup>]<sub>i</sub> (unpublished observation). In RINm5F cells a direct inhibitory effect of adrenaline on





dihydropyridine sensitive  $Ca^{2+}$  channels has been demonstrated [20]. In contrast, in the present report the large increases in  $[Ca^{2+}]_i$  due to depolarizing voltage pulses were not lowered by adrenaline. In accordance to this adrenaline did not inhibit depolarization induced  $Ca^{2+}$  influx. Thus, the inhibitory effect of adrenaline on  $C_m$  occurred in the presence of elevated  $[Ca^{2+}]_i$  indicating an action of adrenaline distal to the rise in  $[Ca^{2+}]_i$ .

The present experiments demonstrate that the simultaneous monitoring of the dynamic changes of  $G_{\rm m}$ ,  $G_{\rm a}$ ,  $C_{\rm m}$  and  $V_{\rm m}$  is a powerful approach to evaluate changes of  $C_{\rm m}$  and hence exocytosis. It is shown that adrenaline attenuates exocytosis at a step distal to  $\lceil Ca^{2+} \rceil_i$  also in INS-1 cells.

Acknowledgements: We are gratefully indebted to Charlotte Hupfer for skilled technical assistance. We thank Dipl. Ing. V. Rohlicek and Dr. U. Fröbe for help in establishing the setup. This work was supported by DFG grant Ul 140/1-2. S.U. was the recipient of a DFG fellowship (Ul 140/1-1).

## References

- [1] Penner, R. and Neher, E. (1989) Trends Neurol. Sci. 12, 159-163.
- [2] Rohlicek, V. and Schmid, A. (1994) Pflügers Arch. 428, 30-38.
- [3] Bergsten, P., Grapengiesser, E., Gylfe, E., Tengholm, A. and Hellman, B. (1994) J. Biol. Chem. 269, 8749–8753.
- [4] Garcia-Barrado, M.-J., Jonas, J.C., Gilon, P. and Henquin, J.C. (1996) Eur. J. Pharmacol. 298, 279–286.
- [5] Hellman, B., Gylfe, E., Bergsten, P., Grapengiesser, E., Lund, P.E., Berts, A., Tengholm, A., Pipeleers, D.G. and Ling, Z. (1994) Diabetologia 37, (Suppl. 2) S11–S20.

- [6] Hellman, B., Gylfe, E., Grapengiesser, E., Lind, P. and Marcström, A. (1992) in: Nutrient Regulation of Insulin Secretion (Flatt, P., Ed.) pp. 213–247, Portland Press, London.
- [7] Nilsson, T., Arkhammar, P., Rorsman, P. and Berggren, P.O. (1988) J. Biol. Chem. 263, 1855–1860.
- [8] Nilsson, T., Arkhammar, P., Rorsman, P. and Berggren, P.O. (1989) J. Biol. Chem. 264, 973–980.
- [9] Ullrich, S., Prentki, M. and Wollheim, C.B. (1990) Biochem. J. 270, 273–276.
- [10] Ullrich, S. and Wollheim, C.B. (1988) J. Biol. Chem. 263, 8615– 8620.
- [11] Ullrich, S. and Wollheim, C.B. (1989) FEBS Lett. 247, 401-404.
- [12] Pralong, W.F., Bartley, C. and Wollheim, C.B. (1990) EMBO J. 9, 53–60.
- [13] Asfari, M., Janjic, D., Meda, P., Li, G., Halban, P.A. and Wollheim, C.B. (1992) Endocrinology 130, 167–178.
- [14] Nitschke, R., Fröbe, U. and Greger, R. (1991) Pflügers Arch. 417, 622-632.
- [15] Renström, E., Ding, W., Bokvist, K. and Rorsman, P. (1996) Neuron 17, 513–522.
- [16] Wollheim, C.B., Ullrich, S., Meda, P. and Vallar, L. (1987) Biosci. Rep. 7, 443–454.
  [17] Shor, E. Codignola, A. Basses, M. and Bishmand, L. (1996)
- [17] Sher, E., Codignola, A., Rogers, M. and Richmond, J. (1996) FEBS Lett. 385, 176–180.
- [18] Ullrich, S., Abel, K., Lehr, S. and Greger, R. (1996) Pflügers Arch. 432, 630–636.
- [19] Abel, K., Lehr, S. and Ullrich, S. (1996) Pflügers Arch. 432, 89-
- [20] Schmidt, A., Hescheler, J., Offermanns, S., Spicher, K., Hinsch, K.-D., Klinz, F.-J., Codina, J., Birnbaumer, L., Gausepohl, H., Frank, R., Schultz, G. and Rosenthal, W. (1991) J. Biol. Chem. 266, 18025–18033.